Résumé
Reliable fault detection and diagnosis (FDD) models are essential for ensuring operation safety and decreasing energy wastage in HVAC systems. However, most existing studies ignore coupling faults and are short of scalability, which limit the practical application. To this end, a parallel deep neural network was proposed for scalable coupling fault diagnosis. The parallel network features a main network for fault feature extraction and several sub networks for diagnosing each type of faults, which has high scalability and twice training speed than serial network. To verify the technical feasibility of proposed method, the experiments were conducted in a typical refrigeration system for simulating common three single faults and three coupling faults. The diagnosis accuracy of presented model was 99.57%, which was higher than other machine learning algorithms such as support vector machine (93.77%), artificial neural network (91.98%) and logistic regression (86.70%). Our study aims to promoting practical application of FDD models in HVAC systems.
Documents disponibles
Format PDF
Pages : 12
Disponible
Prix public
20 €
Prix membre*
Gratuit
* meilleur tarif applicable selon le type d'adhésion (voir le détail des avantages des adhésions individuelles et collectives)
Détails
- Titre original : Parallel deep neural network for scalable coupling fault diagnosis in HVAC systems.
- Identifiant de la fiche : 30031809
- Langues : Anglais
- Sujet : Technologie
- Source : Proceedings of the 26th IIR International Congress of Refrigeration: Paris , France, August 21-25, 2023.
- Date d'édition : 21/08/2023
- DOI : http://dx.doi.org/10.18462/iir.icr.2023.0564
Liens
Voir d'autres communications du même compte rendu (492)
Voir le compte rendu de la conférence
Indexation
- Thèmes : Refroidisseurs d'eau
- Mots-clés : Panne; Refroidisseur; Simulation; Optimisation; Détection; Apprentissage automatique; Réseau neuronal artificiel
-
Proposal and Experimental Study on a Diagnosis ...
- Auteurs : LI K., SUN Z., JIN H., XU Y., GU J., HUANG Y., ZHANG Q., SHEN X.
- Date : 03/2022
- Langues : Anglais
- Source : Applied Sciences - 12 - 6
- Formats : PDF
Voir la fiche
-
Fault detection for vaccine refrigeration via c...
- Auteurs : ABHIRAMAN B., FOTIS R., ESKIN L., RUBIN H.
- Date : 05/2023
- Langues : Anglais
- Source : International Journal of Refrigeration - Revue Internationale du Froid - vol. 149
- Formats : PDF
Voir la fiche
-
Deep learning-based refrigerant charge fault de...
- Auteurs : EOM Y. H., HONG S. B., YOO J. W., KIM M. S.
- Date : 31/08/2021
- Langues : Anglais
- Source : 13th IEA Heat Pump Conference 2021: Heat Pumps – Mission for the Green World. Conference proceedings [full papers]
- Formats : PDF
Voir la fiche
-
Application of feedforward neural networks to s...
- Auteurs : JAIN A., FRAMKE N., TIWARI A., SPASOV M.
- Date : 10/07/2022
- Langues : Anglais
- Source : 2022 Purdue Conferences. 19th International Refrigeration and Air-Conditioning Conference at Purdue.
- Formats : PDF
Voir la fiche
-
Fault detection and diagnosis in chillers using...
- Auteurs : GU B., WANG Z. Y., JING B. Y.
- Date : 22/04/2003
- Langues : Anglais
- Source : Cryogenics and refrigeration. Proceedings of ICCR 2003.
Voir la fiche